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Abstract

The orbits of planets around the Sun are observed to be hypotrochoidal instead of the closed elliptical tra-
jectories initially proposed by Johannes Kepler. This deviation was dubbed “relativistic” since Albert Einstein
proposed an explanation based on the theory of General Relativity. However, with apsidal precession as an em-
pirical property of all orbiting bodies, an exact solution of the Newtonian law of gravitation is produced which
predicts hypotrochoidal orbits. We show that empirical observations, basic algebra, and parameters obtained from
natural values match the predictions from General Relativity with great precision.
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1 Introduction: how Newton was
misled by Kepler

It was the year 1609 when Johannes Kepler enunciated
his first law of planetary motion, establishing the trajec-
tories of planets in orbit around the Sun as ellipses with
the Sun occupying one of their foci. This empirical law
was based on a lifetime of astronomical observations by
him and his predecessor and mentor, Tycho Brahé.

It wasn’t until 250 years later, in 1859, that further,
more precise observations, mainly of Mercury’s orbit by
Urbain LeVerrier[1], revealed that instead of being a
perfectly closed elliptical trajectory, the orbit of Mer-
cury was being shifted forward on each of its iterations,
albeit by a very minute although incontrovertible angle.

What was then dubbed the “anomalous precession of
the perihelion” of Mercury’s orbit was later shown not
to be “anomalous” at all, but rather an inherent charac-
teristic of all orbiting bodies. Such a precessing orbit is
commonly represented as an elliptical figure that rotates
about its own gravitating focus.1

Representations are useful. However, in physical rea-
lity, orbital trajectories are not solid objects that can

1Example of how apsidal precession is commonly represented:
https://tinyurl.com/5fxkpwjs

be given motion. Trajectories “occur”, they do not “ex-
ist” as physical objects, which is a prior requirement
for things to be endowed of motion. Instead, the or-
biting bodies themselves should be considered to follow
hypotrochoidal instead of elliptical trajectories, with a
positive precession.2

Given such glaring evidence, a question that one is jus-
tified to ponder is: how would Kepler formulate his first
law of planetary motion, had sufficiently precise data
been available to him? Furthermore, how would Isaac
Newton, some 80 years after Kepler, derive his universal
law of gravitation if Kepler’s first law stated that orbits
had the shape of hypotrochoids?

The fact of the matter is that Newton, indeed, had stu-
died what he had dubbed “revolving orbits”, in Prin-
cipia’s first book, Proposition 44 and corollaries[2]. He
determined that for an elliptical orbit to be itself in
rotation about its gravitation focus, the orbiting body
should be subject to an acceleration towards that focus
by means of a force inversely proportional to the cube
of the distance, in addition to the already-determined
inverse square law of gravitational forces3.

2How apsidal precession should be represented:
https://tinyurl.com/bddwvus3

3“The difference of the forces, by which two bodies may be
made, to move equally, one in a quiescent, the other in the same
orbit revolving, is in a triplicate ratio of their common altitudes
inversely.”
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Newton’s underlying motivation for Proposition 44, ho-
wever, was an attempt to model orbital trajectories that
deviated from the perfect close ellipse by the interfe-
ring action of other planets, a well-known phenomenon
that, incidentally, also results in a forward precession
of the periapsis. As such, it was never considered as
anything more than an interesting curiosity by scholars
of the following centuries. Before LeVerrier’s measure-
ments, there was no reason to suspect orbits to inhe-
rently be anything other than ellipses, and Newton’s
universal law of gravitation to be anything other than
an inverse square function of distance.

2 Hypotrochoids

Elliptical conic sections (figure 1) can be defined using
only two parameters: a semi-major axis, commonly re-
ferred to as a, and a semi-minor axis, usually b.

Figure 1: Schematic representation of an
ellipse.

From those two parameters, additional characteristics
of ellipses are defined, such as:

� the eccentricity as: ϵ =
√
1− b2

a2

� the semi-latus rectum as: l = b2

a

To make the study of orbital trajectories practical, el-
lipses can be represented mathematically in polar form
as:

r =
l

1− ϵcos(θ)

where r is the distance from the orbited focus to the
orbiting body at an angle of θ. For the figure to instead
be a hypotrochoid, one parameter must be added: ω
which indicates the extent to which the ellipse precesses
at every iteration of the orbital cycle. Thus:

Figure 2: Hypotrochoidal trajectory of
orbiting body after θ = 2π

ω with 0 < ω < 1

r =
l

1− ϵcos(ωθ)
(1)

is a mathematical representation of a hypotrochoid (fi-
gure 2) in polar notation. A value of ω greater than
1 will make the ellipse precess backward, whereas 0 <
ω < 1 will produce a forward precession.

It is useful to note that to complete one full orbital
revolution, the line that links the focus to the orbiting
body must vary by an angle of 2π

ω .

3 Kepler’s laws.

3.1 Kepler’s first law.

In accordance with the arguments given in paragraph
1, empirical observations require Kepler’s first law to be
rewritten as follows:

“All planets move about the Sun in hypotro-
choidal orbits with forward precession, ha-
ving the Sun as one of the foci.”

3.2 Kepler’s second law

Kepler’s second law of planetary motions states that an
imaginary line linking the orbiting body to the focus
sweeps equal areas during equal intervals of time.

Orbital periods are empirically measured as the time it
takes for a planet to travel from one particular position
to the same position in the following orbit. Despite the
extra distance travelled on a hypotrochoidal trajectory
compared to an ellipse, the period is not observed to be
longer. Thus, the usual formulation for Kepler’s second
law holds:
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“A line segment joining a planet and the Sun
sweeps out equal areas during equal intervals
of time.”

An equivalent definition is: the ratio of the area swept
by the said line over the time it takes for this area to be
swept is a constant.

This is true regardless of the time interval considered,
which can be anything between infinitesimal and one
entire revolution. If, for the gravitating body to travel
one entire orbit, the area swept is denoted by A and the
time it takes is denoted by T , then:

dA

dT
= κ (2)

is a constant.

We know[3] that the area of a circular sector of radius
r sustained by a central angle θ is 1

2r
2θ. Hence:

dA =
1

2
r2dθ

Therefore, equation 2 can be written:

dA

dT
=

1

2
r2

dθ

dT
= κ (3)

3.3 Kepler’s third law

“The square of a planet’s orbital period is
proportional to the cube of the semi-major
axis of its orbit.”

Although orbits have been determined by observation to
be hypotrochoids instead of ellipses, no empirical data
justify any change to Kepler’s third law. Thus, the usual
formulation for the period T remains:

T = 2π

√
a3

GM
(4)

where M is the mass of the object about which pla-
nets orbit, and G is the universal gravitational constant,
which allows to make a mathematical equality from a
statement of proportionality.

This enables us to represent the ratio of area swept to
period for one entire orbit. Hypotrochoids are open ge-
ometrical figures, and their area is impossible to define.
However, Kepler’s second law relates to “area swept”,
which happens to equate to “area” only for close figures
such as ellipses. For hypotrochoids, the “area swept”
can still be calculated.

As stated earlier, one entire orbital revolution is com-
pleted when the angle of the line segment has travelled
2π
ω radians. Therefore, area swept is:

A =
1

2

∫ 2π
ω

0

r2dθ =
πl2

ω
√

(1− ϵ2)3
(5)

From equations (4) and (5), we get:

A

T
=

l2

2ω
√

a3

GM

√
(1− ϵ2)3

= κ (6)

which is the same constant as in equation (2).

3.4 Modified Keplerian Dynamics
(MOKD)

We shall hereafter refer to Kepler’s laws as enounced
above as: Modified Keplerian Dynamics, abbreviated as:
MOKD.

4 Newton’s universal law of grav-
itation.

To derive his universal law of gravitation, also known as
the “inverse square law”, Newton used all three of Ke-
pler’s laws of planetary motion. In this section, we will
again follow Newton’s reasoning but instead use the hy-
potrochoidal trajectories of orbits as Kepler’s first law.

4.1 Exact solution of gravitation with
MOKD

The acceleration of an orbiting test mass will be found
by differentiating the equation of motion twice over
time. From equation (1):
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dr

dT
= − ϵlωsin(ωθ)

(1− ϵcos(ωθ))2
dθ

dT
(7)

From equations (3) and (1):

dθ

dT
=

2κ

r2
=

2κ(1− ϵcos(ωθ))2

l2
(8)

Replacing dθ
dT of equation (7) by equation (8) :

dr

dT
= −2κωϵsin(ωθ)

l
(9)

Differentiating a second time:

d2r

dT
= −2κω2ϵcos(ωθ)

l

dθ

dT
(10)

Again using equation (8) to solve dθ
dT :

d2r

dT
= −4κ2ω2ϵcos(ωθ)(1− ϵcos(ωθ))2

l3
(11)

and using equation (1) to eliminate θ:

d2r

dT
= 4κ2ω2(

1

lr2
− 1

r3
) = atot (12)

Already, we see appearing the additional r−3 term cal-
culated by Newton in Proposition 44; however, in the
present case, no interfering influence from other planets
is involved.

Equation (12) gives the total acceleration atot the
test mass is subject to in its orbital trajectory, which
amounts to the sum of the radial and the centripetal
components of acceleration. However, only the radial
component of acceleration is of interest. Therefore, we
subtract from atot the centripetal component of acceler-
ation ac, which is given by:

ac = r

(
dθ

dT

)2

(13)

and use Newton’s second law of motion to calculate the
radial force[4]:

F = m(atot − ac) = m

(
d2r

dT
− r

(
dθ

dT

)2
)

= 4κ2m

(
ω2

lr2
+

1− ω2

r3

) (14)

From equation (6):

κ2 =

(
A

T

)2

=
GMl4

4a3ω2 (1− ϵ2)
3 =

GMl4

4a3ω2
(
l
a

)3
=

GMl

4ω2

(15)

equation (14) becomes:

F = GMm

(
1

r2
+

l
(
1− ω2

)
ω2r3

)
(16)

Let:

Ω =
l
(
1− ω2

)
ω2

(17)

The universal law of gravitation becomes formulated as:

F = GMm

(
1

r2
+

Ω

r3

)
(18)

4.2 Finding the value of Ω

In Table 1, we find the values of ω as measured[5, 6, 7] by
observations of the orbits of the solar system’s planets.
When represented in units of Ω as per equation (17),
we obtain a value that is constant to within 1, 6% of
average, when excluding the data for Saturn, which is
known[8] to exhibit a precession that is unexplained by
Newtonian and even General Relativistic predictions.

However, it is evident that such a way of establishing
the value of Ω would yield a result valid solely for the
solar system. For the Newtonian law of gravitation to
truly be universal while remaining empirical, some ob-
servations of precessions for planets in orbit around stars
other than the Sun must intervene. Unfortunately, at
the time of writing the present article, the only such ob-
servation in existence is that of star S2[9] which orbits
the supermassive body at the midst of the Milky Way.
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Orbiting Central l G1

body mass (Kg) (m) ω Ω (m·kg−1)
Mercury 1.99E+30 5.54E+10 0.9(7)19905161 8882.18 4.47E-27
Venus 1.99E+30 1.08E+11 0.9(7)59060114 8855.77 4.45E-27
Earth 1.99E+30 1.50E+11 0.9(7)70380402 8859.71 4.45E-27
Mars 1.99E+30 2.26E+11 0.9(7)80322377 8913.40 4.48E-27
Jupiter 1.99E+30 7.76E+11 0.9(7)94490741 8555.61 4.30E-27
Saturn 1.99E+30 1.42E+12 0.9(7)97613762 6789.14 3.41E-27
S2 8.48E+36 3.15E+13 0.9(3)52677214 35061740199.03 4.14E-27

Avg: 4.38E-27

Table 1: Measurements of Ω from observations of the apsidal precession
for the planets of the solar system and star S2.

Although, admittedly, a data set of only two individuals
is rather scarce in terms of statistical population, the
numbers nevertheless show a proportionality of Ω with
the mass of the central body about which the orbiting
bodies revolve. Thus, by replacing Ω with its ratio to
the mass of the central body, we obtain a value that
is constant to within 3% of the average of 4, 38E−27.
Noticing that Ω

M is somewhat constant, equation (18)
can be rewritten as:

F = GMm

(
1

r2
+

G1M

r3

)
(19)

where G1 = Ω
M is the constant for which we seek the

value. Incidentally, the value of G1 coincides within
1, 6% to a natural value of:

G1 ≈ 6G

c2
± 1, 59% (20)

that is: six times the gravitational constant divided by
the speed of light squared, which also happens to be in
the correct units of metres per kilogram.

4.3 Final forms

Inserting the value of G1 from equation (20) into equa-
tion (19), the equation of force takes the form:

F = GMm

(
1

r2
+

6GM

c2r3

)
(21)

Using equation (20) to solve equation (17) for ω leads
to a planet’s precession in ratio of 2π as:

ω ≈
√

l

l + 6GM
c2l

(22)

The units of σ which is measured in radian per revolu-
tion converts to the units of ω in fraction of 2π by:

ω =
1

σ
2π + 1

(23)

Therefore, from equations (22) and (23), precession ex-
pressed as radians per revolution is:

σ ≈ 2π

(√
1 +

6GM

c2l
− 1

)
(24)

5 Precession in general relativity

From General Relativity’s postulate of the constancy of
the speed of light, Einstein came up in 1915[10] with a
solution to Mercury’s “anomalous” precession, which in
its first-order approximation is as follows:

σ =
24π3a2

T 2c2 (1− ϵ2)
(25)

where, in addition to the symbols defined earlier, c is
the speed of light, and σ is the precession in units of
radians per revolution. Equation (25) reduces to:

σ =
6πµ

c2l
(26)

where µ is the product of the mass of the body about
which planets orbit and the universal gravitational cons-
tant. As we can see, nothing in this formula is particu-
lar to Mercury or its orbit; the calculated precession
depends only on the orbit’s semi-latus rectum and the
mass of the orbited body. Insofar as General Relati-
vity’s prediction is accurate, this indicates that in prin-
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Orbital
σ σ velocity

Comment M/l (GR) (MOKD) Difference (%c)
Sun-Mercury 3.44E+19 4.81E-07 4.81E-07 0.00% 0.02%

2.00E+20 2.80E-06 2.80E-06 0.00% 0.04%
1.00E+21 1.40E-05 1.40E-05 0.00% 0.09%
5.00E+21 6.99E-05 6.99E-05 0.00% 0.19%
2.50E+22 3.50E-04 3.50E-04 0.00% 0.43%

White dwarf 1.25E+23 1.75E-03 1.75E-03 0.01% 0.96%
S2 2.69E+23 3.77E-03 3.76E-03 0.03% 1.41%

6.25E+23 8.74E-03 8.74E-03 0.07% 2.15%
2.00E+24 2.80E-02 2.79E-02 0.22% 3.86%
4.00E+24 5.60E-02 5.57E-02 0.44% 5.46%
6.00E+24 8.39E-02 8.34E-02 0.66% 6.70%

Neutron star 3.00E+25 4.20E-01 4.07E-01 3.13% 15.26%
1.25E+26 1.75E+00 1.56E+00 11.02% 33.75%

ISCO black hole 2.25E+26 3.14E+00 2.60E+00 17.16% 50.00%
Unstable orbit 3.37E+26 4.71E+00 3.65E+00 22.51% 70.71%
Photon sphere 4.49E+26 6.28E+00 4.60E+00 26.79% 100.00%

Table 2: Comparative calculations of precession from General Relativity
and Modified Keplerian Dynamics (MOKD)

ciple, any orbiting body should normally precess, and
not just Mercury!

5.1 Comparing MOKD and GR

Table 2 shows the calculated precession for General Re-
lativity (from equation (26)) and for Modified Keplerian
Dynamics (from equation (24)) for values of M

l increa-
sing (larger M and/or smaller l) from the Sun-Mercury
system to a maximum of impossible orbits below the in-
nermost stable circular orbit (ISCO) around a hypothe-
tical black hole. We see that the precession calculated
by MOKD fits that from General Relativity to within
1% until M

l reaches values such that orbital velocities
approach a significant percentage of the speed of light.

Such extreme conditions correspond to a hypothetical
planet orbiting at a very low altitude around a central
mass akin to a neutron star (the value of M

l of 3.00E+25

in the highlighted line of Table 2 is for a planet at a 100-
km radius orbit around a 2 M⊙ body). Even for star S2,
which is the most extreme case observed to date with a
M
l of 2.69E+23, the difference between the predictions
from MOKD and General Relativity is no more than
0.03%. This suggests that Einstein’s prediction of pre-
cession could not have been confirmed by observation
until measurements could be made for a stellar system
of similar configuration.

6 Discussion

We argue that as early as the 16th century, Kepler had
all the necessary elements in hand to formulate his first
law of planetary motion as hypotrochoidal instead of
elliptical trajectories, barring the possible exception of
sufficient precision in the measurements. On this basis,
Newton would have established a universal law of gravi-
tation that would have approached very closely the pre-
dictions of orbital mechanics from General Relativity.
We claim that the procedure described in the current
paper is similar to what Newton could have done.

Attempts to explain Mercury’s apsidal precession using
Newtonian mechanics, such as those from Hall[11],
Seeliger[12], Wells‘s characters ‘Alice‘ and ‘Bob‘[13] and
others, have been using a top-down approach by hypo-
thesizing various imagined modifications to the mathe-
matics of the universal law of gravitation until one is
found that closely predicted the observed apsidal pre-
cession of Mercury. However, the “let’s-try-this-and-
see-how-it-goes” approach stems more from guesswork,
and since many different solutions may lead to the same
prediction, it is impossible this way to ascertain which
solution can potentially be the correct one.

Gerber’s[14] and Einstein’s approaches were similarly
top-down, however, their hypotheses (finite speed of
gravity; curved spacetime) were related to the physi-
cal world, and not just to the mathematical model of
Newtonian gravitation. In contrast, the derivation pre-
sented here used a bottom-up approach, based solely
on the observable fact that orbits precess, consistent
with Newton’s “Hypotheses non fingo”. Of course, the
present derivation pretends in no way to be better or to
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replace General Relativity’s model, nor does it pretend
to explain what gravity is.

7 Conclusion

Had he had access to measurements of planetary orbits
with a precision in the order of LeVerrier’s, Johannes
Kepler could have established the trajectory of orbits
as elliptical hypotrochoids instead of perfect ellipses as
the statement of his first law of planetary orbits. Sub-
sequently, Newton would have enunciated the universal
law of gravitation as:

F = GMm

(
1

r2
+

6GM

c2r3

)

which predicts such orbital trajectories. The derivation
shown in this article depicts what Newton could have
come up with and how he could have done it.

The implication is that the observation of Mercury’s or-
bit in 1859 by LeVerrier would have been no mystery,
but rather a drab confirmation of what should be ex-
pected. Hence, the explanation of the “anomalous ap-
sidal precession of Mercury” could not have been con-
sidered the grandiosely successful test of general relati-
vity that history tells us it is... In fact, the necessary
astronomical technologies might still be decades away
before some spiritual descendant of LeVerrier could ob-
serve some apsidal precession that shows a discrepancy
from Newton’s prediction, thus confirming Einstein’s so-
lution of precession.

It is nowadays generally accepted that the apsidal pre-
cession said “relativistic” is due to “spacetime” being
curved in the vicinity of massive bodies. It is pecu-
liar that such a firmly established physical property of
the real world would be needed as an explanation for
a discrepancy in a physical phenomenon (gravity) that
itself has no explanation in the first place. It would
seem that Newton’s inverse square law is so deeply an-
chored in the paradigm of physics, that any deviation
from it would necessarily require a physical explanation
from the realm of “new physics”. Had the universal law
of gravitation instead been formulated as an “inverse
square plus an inverse cube” function of distance in the
first place, no doubt that the evolution of physics in the
last two centuries could have been very different.
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